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Effects of Fringing Fields on the Capacitance
of Circular Microstrip Disk

WENG CHO CHEW arnp JIN AU KONG

Abstract—The effects of fringing ficlds on the capacitance of a clreular
microstrip disk are studied with the dual integral equation formalism for
practical microstrip circuits when the substrate thickness is small. Ap-
proximations as well as exact numericai evaluatlons are mede in the
calculation of the capacitance, With a seminumerical approach, an ap-
proximate formuls for the capacitance is obtained and shown to yield
accurate results with the simple wse of a calculator, Asymptotic lower
bound sud exact numerical computations are also carried out, The varlous
techniques are Hustrated and compared with numerical resuits,

I. INTRODUCTION

HE FRINGING field effects on the capacitance of a
T circular parallel-plate capacitor has been of historical
interest and more recently has become a fashionable topic
because of the applications to microstrip circuit and an-
tenna elements, An approximate solution for the capaci-
tance of a circular capacitor in free space was first ob-
tained by Kirchhoff [1] in 1877 by making use of the
technique of conformal mapping to account for the fring-
ing fields. In 1932 Ignatowsky [2] obtained the capaci-
tance in the limit of small plate separation, whose result
was later shown by Polya and Szegd [3] with a variational
technique to be an asymptotic lower bound. In 1963
Hutson [4] demonstrated rigorously the validity of
Kirchhoff’s formula. Leppington and Levine [5] in 1970
used an integral equation of the first kind for the distribu-
tion of the potential off the disks to obtain an approxima-
tion for the capacitance, reproducing the result of Kirch-
hoff and Hutson and providing details with regard to the
next correction term. Of all the results that confirmed
Kirchhoff’s result, conformal mapping was used in com-
puting the fringing field effects.

In microsirip applications, the capacitor plates are sep-
arated by a dielectric sheet instead of free space. Employ-
ing Galerkin’s method and using a basis function which
corresponds to a constant charge distribution, Itoh and
Mittra [7] obtained numerically the capacitance for a
circular microstrip disk. Borkar and Yang [9] formulated
the problem in terms of dual integral equations and
numerically computed the capacitance for small plate
separation. For practical usage, Shen et al. [10] devised an
approximate formula for the capacitance by drawing anai-
ogy with Kirchhoff’s formula.
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In this article we make use of the dual integral equa-
tions formulation to study the effects of fringing fields on
the capacitance of a circular microstrip disk. We first

 derive an asymptotic lower bound for the capacitance

reducible to that obtained by Polya and Szegd [3] in the
limit of free space. We then evaluate with a numerical
method the capacitance for small plate separation. For
practical usage, we also obtain, with a seminumerical
approach, an approximate formula for the capacitance of
the microstrip disk. The various techniques are compared
and illustrated with various numerical results,

II. FORMULATION AND ASYMPTOTIC RESULT

Consider a circular microstrip disk with radius a at the
potential of ¥ and separated from the ground plane by a
dielectric substrate with relative permittivity e, and thick-
ness d (Fig. 1). The mixed boundary value problem has
been formulated in terms of dual integral equations [7], [9]

[ daad(a) G(a)(am) = V‘;", 0<p<a (1a)
and
Awda ad(a)y(ap)=0, p>a (1b)
where
6(e)= iz ] @)
(I+e)ad[1-((1~¢)/(1+ g))e 2]
and
a(p)= [~ daais(a)o(ox) ®)

is the charge distribution on the disk.
Applying a method similar to that of Galerkin [7],
Tranter [11] assumed that

H(@)ma Dty r(ad) @
m=Q
Substituting (4) into (3), we obtain
a(p)=
{[1-6/a1/2)"" & Tm+1) .- 02
= 2o -2(8)]
p<a
0, p>a
(5)
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ground plane

Fig. 1. Geometrical configuration of the problem.

where P{*f)X(x) is a Jacobi's polynomial. By doing so,
equation (1b) is automatically satisfied. Substitution of (4)
into (1a) produces an infinite system of linear equations
which can be solved by an iteration process. It is ap-
propriate to choose k=1 so that the iterative solution
converges quickly when d—0, When k=1, the Jacobi's
polynomial becomes Legendre’s polynomial, thus the
above approach is similar to that used by Polya and Szegd
[3}

The infinite system of linear equations can be written as

S 4, 4,m=E(n), (6a)

mm0

nw0,1,2,

where
o0
Apy= [~ da G0}y i(28) . i(2a)  (60)

and

n>0

0,
E(n)= [ Veeya/2d, nwo. (60)

Furthermore, by integrating the charge density in (5), it
can be shown [3], [9] that the capacitance of the disk is

™

To find a small d approximation for 4,,,, we rewrite it
as [11]

C= '—V‘aon

8”!"
A= (2+4n)

where §,,, is the Kronecker delta function and
-
Bm""fo da] G(a) = 1]a”™ V. 1(0@)/2p4 (aa). (8D)

It can be shown that B,,—0 as d-0, so the matrix
formed by 4,,, is dominated by diagonal elements. To
obtain a small d/a approximation to B,,,, we rewrite G(a)
as

“+ B (8a)

Gla)= C’[l_e—-Zad] & (l'—‘r

Tr o 2 1+e,)"_2"“d' ©)

nm=0
As such, By, can be evaluated exactly as a summation of
elliptic integrals [3] from which we can find its small d
approximation. However for general B,,, we resort to
other means to find its small 4 approximation,

First we notice that

Jam+1(a0)J. (aa)~-2—-[sinusoida1 tenn]+-(-:lr:-':
2m+1 i+l Toa s

+0(a”?), a-oo (10)
and
G(a)~ 1~ i‘f‘i +0(a%?), ad-0.  (11)
Thus we rewrite (8b) as
me 4 2077 a -
By G+ -2 Lda(aa)z+Az[G(a) 1]
(12)

where

o= 0] G(0)= 1] s 0 ()

_(=D""  oa
T (aa)+4?
and A4 is an arbitrary complex constant, We note that the
part in the curly bracket of C,, consists of a sinusoidal
term plus a term of O(a ~?) when a—»o0. Thus the contrib-

ution to the integral comes from around a==0. In view of
(11), we can write C,,, as

© d
Con™ --j; da':; {sz+1(aa)J2n+1(““)

(=D aa }

. (aa)*+ 42

+j;”da[0(a)—l+a?:-i]a“

(-D)""™  aa ]
T (aa)+4?
(13)
Both of the above integrals converge. In the limit d/a-0,
the first integral is of O(d/a) while the second integral is

of o(d/a) indicating an order higher than the order of
d/a and, therefore, less significant. Therefore,

X{szﬂ(aa)lznﬂ(aa)”

Cm“’_'gj; da{sz+l(0‘a)J2n+l(°‘a)

=D aa ]

T (aa)+ 4>

* o( : )' 4 -»0,

a a
d. | = _

- -; 71\1_.,1% { j; da(aa) A"2»1-\% l(aa)'lzn.'. l(aa)da

_(-1)"""f0°°da (ag)' ™ }

m (aa)*+ 4>

(14)
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It can be shown [12, p. 692] that

i " da(00) 1100 (08}~ {1+A[¢(1)

—-x[/(m+n+ %)wan—Mﬂztﬁ)—
_Y(m-—n+1/2) ]}

2
+0(A), A0 (15a)

where y(x) is the psi (digamma) function. Using the
recurrence relation of Y(x), the above approximation can
be reduced to

20 _ _1 n—m
f(; da(aa) AJ2m+l(aa)J2n+l(aa)~£—,;>);Tﬂ

. {1+>\[¢(1)—2—1n2—2\p(%)

men 1 Im—n| 1 }\
—.2:1 ey .21 __...-x_l/z} +O0(\), A-0. (15b)

Also, it can be shown that

-y 1-x _yn—m 7
" g, 0 (D)
T 0 (aa)’+ 42 7Aa
[1-Aln4]+0@R), A-0. (15¢)
Therefore, we conclude that
Con —j——(:—Q-———[y—2+31n2+lnA
ae, T
m+n 1 jm—n| 1
-2 a2 a0 09

where vy is the Euler’s constant, Next, we shall evaiuate the
second integral of B,,,. By making use of (9), it can be
rewritten as

(=1)""" oo a (=D ae
T fo da(aa)2+A2[G(a) = Tae
® [j—e\" po 1
. T P . S—
n%O( 1+€r) '{0 ad((aa)®+ 4?)
— 210 —2(n+ Da (__1)n—m
,[e 2 d~e 2(n+1) d]-—T (17)
o d 4 = (1—6 )"
—~ __1 n m__ (4 2 ln r
(-1 ai—e Ezn( ") IT+4e,

2

The small d/a approximation in the above is evaluated in

w de,

+-————————(_1) i[y+ln-2—A¢:zﬁl--—§-J+0(a'2), ‘Z—>0- (18)
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Appendix A. Hence from (12) we find

DT d e g )
B,, lnd+ln4 3

7 r

-2 $ wan( 2

1—¢? =2 1+¢

fm —nj 1
B K§1 K—l/z ?

From the above, we deduce that an element of the matrix
is

m-+n 1

- X k+1/2

e ]

as g-»o. (19)

A o tm _(ZDTT A
™ (24+4n) e, Q
a 1 4 = 1-¢\”
+ {In= +Ind— - — —= In ’)
{ d 2 1_53,22" ”(1+e,
m+n 1 | —nl 1
- El k+1/2 2}1 x—1/2}

+o(£), as i1w-->0. (20)
a a
If, instead of choosing an infinite set of basis functions in
(5), we choose N + 1 basis function, then the matrix equa-
tion to be solved is

N

2 amAmn"E(n)’ (21)

m=0
We define a normalized capacitance C = Cd/(ma%,¢). It
can be shown, by inverting the matrix in (21) and as a
consequence of (6) and (7) that the approximate normal-
ized capacitance is

n=0,12,---,N

~

. A,

Cn= 2detA|

where A4,, is the cofactor of the element A4, of 4 and 4 is

an (N+1)X(N+1) matrix. It was shown by Polya and

Szegd, or it is apparent as a consequence of variational
properties of Galerkin’s method [13], that

&,<6,<6,<- <G, <C. (23)

Since the infinite set of Legendre’s polynomial used in (5)
is complete, we expect that

(22)

~

~ ~

C= Jim Cy= Y et @4
Also we can rewrite
~ 1
Cy= 5 (25)

00
N
oo oo 2 ot ol

From (20), it is seen that 4,,~O(1) if n=m and 4,,~
O(d/a) if n#m when d/a—0. Thus we conclude that
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A,;~0(d/a) for i#0, and 3V 4,4,,~O0(d*/a®) when
d/ a—0. As a consequence

1 d? d
Cy~ T4, +0( ), as -5->0. (26)
From (20), we obtain
2d a 1 4¢
CN~1+ {1 2d+1n8—5-—1—:—€—§
s 1-¢\"
. 2 r
n§2n 1nn( 1+€r) }
+ o(-‘f), as 2 250, @7)
a a

We see that for N finite, C~'N is asymptotic to the same
leading term. From (23), we may be led to the wrong
conclusion that C = C is also asymptotic to the same
expression. We have to be cautioned, due to our argument
in (10) which is only good for m and n finite, that we
cannot extend the validity of (27) to that when N—co,
Thus (27) is not the correct asymptotic value to C butit is
an asympiotic lower bound to C. When ¢, =1, we repro-
duce the asymptotic lower bound obtained by Polya and
Szego [3).

Kirchhoff [1], Hutson [4] and Leppington [5] have all
obtained the correct asymptotic value of the capacitance
when ¢, =1 with the aid of conformal mapping. When
¢, > 1, conformal mapping is not applicable. Thus we shall
obtain an approximate formula for the capacitance
through a seminumerical approach.

1I1.

The numerical evaluation of the capacitance for the
coaxial disks in free space was first carried out in 1941 by
Nomura [14]. His results were later checked and corrected
where errors existed in 1958 by Cooke [15). Cooke makes
use of the Love-Cooke [16] integral equation which is
singular. Nomura expanded the potential in a series of
integrals involving Bessel functions. It was found by them
that for d/a<0.2, the computation for the capacitance
was very laborious and was not carried out.

Itoh and Mittra [7] used Galerkin’s method and use of
one basis function, found the numerical capacitance of
the disk. When d/a>0.5, it was found that the use of
Maxwell’s function afforded 3 digit accuracy when com-
pared with the Nomura—Cooke results. However, for d/a
< 0.5, the results deteriorate. Borkar and Yang [9] used
Tranter’s method to the solution of the dual integral
equation but the results obtained are inaccurate for d/a <
1 probably due to the difficulties encountered in evaluat-
ing the integral (6b). Also the choice of an infinite set of
Legendre’s polynomial is unsuitable for numerical com-
putation. This is because the singularity of charge distrib-
ution at the edge can only be approximated by infinitely
many Legendre’s polynomials. If we choose k=1/2 in (4),

NUMERICAL METHOD

the corresponding charge distribution from (5) is given by

o(o)=

‘/13 (I_B;)—Vz S _I_(L"j_l)_pw—l/z)( ...?B.z.),
a [/]

o "T(m+1/2) a*
* 0<p<a (28a)

0, »p>a (28b)

.

We see that such a representation takes into account the
charge singularity at the edge which is different from the
approach of Borkar and Yang [19] for d/a<1. Notice
also that Itoh and Mittra [7] considered only the first term
in the series. Analogous to (6b), and mnoting that

Jome1y0@)=V20a/7 j,,(aa), we define

K= [~ daG(@)ajpn(00) s 2)

where j,() is a spherical Bessel function. The integrand is
oscillatory and decays algebraically, which makes its
evaluation difficult. However, noticing that as a—>c0

(29)

G(a)~ + (exponentially small terms) (30)

ad[ 1 + €]
we rewrite

™ =-/(; da[ Gla) = ad[ lti- 6]
oy ) am(ealin(aa). G1a)

The first integrand decays exponentially fast and can be
computed efficiently. The second integral can be
evaluated explicitly giving

8mn

® . , T
J, iz @inn(0)= 5 s

The normalized capacitance using (N +1) basis function
is Cy=2K,,/det|K|.

For numerical computation, it is found that the use of
the first two basis function gives 4 digit accuracy when
d/a<0.4 and 5 digit accuracy when d/a>0.4 when com-
pared with the Nomura~Cooke results for ¢,=1.

(Xj 2m (aa)j 2n(aa)

(31b)

IV. SEMINUMERICAL APPROXIMATION

From the form of the asymptotic lower bound derived
by the authors, and the various work of the previous
authors, we conclude that an asymptotic approximation to
the capacitance when d/a—0 is of the form

azvre,eo 2d d
c=T {1+W€’a[1n(2d) (,-;)}+o(l).

(32)

An analytic expression for the function g(e,,d/a) is dif-
ficult to derive. We also note that the asymptotic lower
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Fig. 2. The function F(e),

bound of the dielectric case differs from the free space
case by a term

4 & , 1-¢\"
T4 n“lnn Tre

r n=2

which can be shown to be almost a linear function in e,
(Fig. 2). This leads us to believe that the function
g(e,,d/a) in (32) is also a linear function of .. We can fit
the numerical curve very well if we also make it a linear
function of d/a. Thus the numerical value of the capaci-
tance is computed for ¢,=1 and 8.5 at d/a=0.1 and
d/a=0.5, By interpolating between ¢,=(1,8.5) and d/a=
(0.1,0.5), we obtained the following formula:

a’me,s, 2d
et [1+ [1(2d)+(141€+177)

+ < 02686+ 1.65)] } (33)

We note that the first term is equal to the capacitance by
ignoring fringing fields. For the terms accounting for the
fringing field effects, the logarithmic term is due to the
field emanating from charges at the top surface of the disk
and is therefore independent of ¢,. The remaining higher
order terms are mainly the results of fringing field effects
at the edge of the disk which are seen to depend on both ¢,
and d/a.

Y. CONCLUSIONS

We have obtained an approximate formula for, the
capacitance of a circular microstrip disk in (33) by a
seminumerical approach. The asymptotic lower bound has
been derived in (27) which reduces to that obtained by
Polya and Szegd in the case of ¢=1. In addition a
numerical method is used to compute the highly accurate
values for C in order to compare with the various results.
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rromrren NUMERICAL METHOD (NM)
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NM (1317

1,580 | 1830 [2,0751 | 23183 | 25607 | 2,803 | 30464 32901 [35346
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kA |29 [ 149 | ves | 180 | 193 | 204 | 2.5 | 25 | 253 | 242

Fig. 3. Normalized capacitance as a function of d/g for ¢, = 1.
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Fig. 4. Normalized capacitance as a function of d/a for ¢, =2.65,

——— NUMERICAL METHOD (NM)
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+<-ASYMPTOTIC LOWER BOUND (ALB)
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€ 598
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ol 02 03d 05 10
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ALB | 108 [ w2 | 17 [1e2 {127 | 1.3 | 138 | 140 | 148 | 149

Fig. 5, Normalized capacitance as a function of d/a for ¢, =96,

In Figs. 3-5 we plot Cd/¢.e,ma* as a function of d/a for
the dielectric constants €, =1, 2.65, and 9.6. For ¢,=1, we
compare our results with Kirchhoff’s formula

¢, ma’

=

{1+2d[1n(2d)+1n(16w)—1]}. (34)

When ¢,%1, we compare with the formula devised by
Shen et al. [8]
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e 819 (1, 24 1) (0
Cm e {1+m’a[ln(2d)+l.7726]}. (35)

We note that the seminumerical approximation agrees
very well with the numerical result. The error is approxi-
mately 1 percent for d/a<0.5. We also note that the
approximations due to Kirchhoff is inaccurate unless d/a
<0.]1 and due to Shen et al. unless d/a<0,1. Shen’s
approximation incurs an error of about 6 percent when
d/a=0.1 and €, =2.65,

In general we see that the fringing field effects on the
capacitance are not small even for small 4/a. For exam-
ple, when d/a=0.1 and ¢, =2.65, the fringing field gives
an 18 percent increase in capacitance. When ¢, is large,
the fringing field effects become smaller because of the
increased trapping of electric flux in the dielectric sub-
strate,

APPENDIX A
We want to evaluate a typical integral in the series
given by (17)
® 1
Im |
0 d((aa)*+4?)

First by partial fractioning the rational part of the in-
tegrand, the above integral can be written as

[e-—zm__ e—2(n+ l)ad] da. (Al)

-1 poo 1
) - _________[e~2nad__e~2(n-+l)ad]da

2

A% 2(a+ -ié-)
a
1 = 1 —2nad _ ,~2(n+1)ad

-] e —e ]de

A Yo 2(a- _i,i)

a
Lol e —2mt1ad
yord M [e e ]da. (A2)

The first integral can be evaluated exactly in terms of
exponential integrals

2idnd/a

da=e

[e-Znad_e

f°°_____1__ —2(n+l)ad]
" («+5)

a+
a

-E,(2iAnd/ a)— ¥4+ V4/3E (2kA(n+1)d/a). (A3)

The second integral is similar to the first. The third
integral can be obtained from (A3) by taking the limiting
value of 4—0. As such:

®l.  _ —2n _ n
-[o — e Zned . g =% +l)"““']dx—--—ln(n_H). (A%

Therefore

I=-

2A2d [eZiAnd/aEl(zl-And/a) + e—ZLAnd/a
-E,\(—2iAnd/a)— e¥A"*V4/3E (2id(n+1)d/ a)

— e~ 2A(n+Dd/ap (2id(n+1)d/a)

+21n( n-:l-l )]

(A5)

Using the fact that
e**E\(2ixd) + e~ (~2ixd)
= —2c08(2xd)( y+In(2xd) |
2sinsd) & (D@
25in(2xd) Eo m+1)!12m+1)

- S
2cos(2xd)p§1 390!

+ 7 sin(2xd)
(A6a)
~=2[ 7 +1n(2x) +Ind](1~2x%?)
— 6(xd)? + 2mxd + O(d®), d->0 (A6b)

where y is the Euler’s constant. We can show that

I~%§[(2n+ 1)(7+1n(£—§£)" %)

- n*lnn+(n+1)>n(n+ 1)] + —f; + 0(d?.
Then the integral in (17) reduces to

S (1-¢\" = 1 ~2nad _ 42
'y ned _ 9 (n+Dad
2 (1+‘r) »/; ad(a®+ 4% [e ]

nw0
44 L 1-¢\"
a2 wm4 j
az(l - E,.) n§2 1+ &

PR o(24) 3

a*? 2
1+e¢,
+7 +0(d? d->0. (A7
T + 0, (A7)
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Analysis of a Microstrip Covered
with a Lossy Dielectric

1. J. BAHL anp STANISLAW S. STUCHLY, SENIOR MEMBER, IEEE

Abstract—The analysis of a microstrip line covered with a low-loss sheet
material is presented in this paper. Numerical results show that the
characteristics of g microstrip covered with a thick sheet of high dielectric
constant are drastically affected. The effect is more pronounced for small
values of W /h ratio. A closed-form expression for the dielectric loss of 2
multiiayer structure is derived. The extension of present method to high-
loss materlals is aiso discussed.

Numerical and experimental results for effective dielectric constant of a
microstrip covered with low- and high-loss sheet materials are compared
and found to be in good agreement,

I. InTRODUCTION

HE microstrip line has been widely used as a trans-

mission line [1] as well as a component in
microwave-integrated circuits [2]-[4]. Microstrip antennas
have found many applications in airborne systems due to
their low profile and conformal nature. Recently several
papers have appeared in literature describing microwave
methods employing microstrip lines for monitoring mois-
ture content in food materials, sheet materials, etc. [S]-[7].
In this case the line was supported on a substrate material
of relatively low dielectric constant (<10) and then
covered fully or in part by a “wet” substance of relatively
high permittivity (> 15). The fringing field interacts with
the substance and produces a change in the attenuation
constant of the line. The change in the attenuation con-
stant can be calibrated in terms of moisture content or
other parameters which affect the dielectric properties of
the material.

When the microstrip line is covered by a sheet material,
its characteristics, like characteristic impedance, phase
velocity, losses, and Q factor change with the dielectric
constant, loss tangent, and thickness of the sheet material.
It is interesting and important to study the effect of sheet
materials on the characteristics of microstrip lines. Com-
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prehensive literature containing analyses of microstrip
lines are available [1], [3]. Several methods for the solution
of a two-dimensional boundary value problem involving
two different media are known, for example, the confor-
mal mapping method [8], the integral equation method [9],
[10], the relaxation method [11], and the variational
method [12]. The analytical treatment of multiple
boundaries is much easier in the variational method than
in the conformal mapping or other numerical methods. In
the variational method an approximate charge distribu-
tion on the strip conductor is assumed and the resulting
formulas for capacitance can be expressed in closed form
which are convenient for calculation on a digital com-
puter.

In this paper, first the variational method is described
for the microstrip covered with a low-loss sheet material
then the extension to high-loss materials is discussed. A
closed-form expression for the dielectric loss of a multi-
layer structure is also derived. Numerical results obtained
for the characteristic impedance and the phase velocity of
a microstrip covered with a lossy sheet can also be used
for calculating the resonant frequency of microstrip an-
tennas buried in a lossy medium and to calculate the
change in the characteristic impedance and phase velocity
values of a microstrip coated with protective layers.

II. THEORY

A. Characteristic Impedance and Phase Velocity

The characteristic impedance Z,, and the phase velocity
0y of a TEM transmission line can be written as

Zy=2/Ve, (D

v,=c/Ve, 2

with Z=1/Cye 3)
=C/C, 4)
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