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Effects of Fringing Fields on the Capacitance
of Circular Microstrip Disk
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L INTRODUCTION

T

HE FRINGING field effwts cm the capacitance of a

circular parallel-plate capacitor has berm of historical

i.ntmmt and more recently has become a fashionable topic

because of’ the applications to microstrip circuit and an.

Wma demerits, An approximate solution for the capaci-

tanm of a cimdar capacitor in free space was first ob-

tained by Kiwhhoff [1] in 187’7 by making use of the

technique of conforrnal mapping to account for the frin~
ing fields, In 1932 Ignatowsky [2] obtained the capaci-

tance in the limit of small plate separation, whose result

was later shown by Polya and Szego [3] with a variational

technique to be an asymptotic lower bound. In 1963

Hutson [4] demonstrated rigorously the validity of

Kirchhoff’s formula, Leppington and Levins [5] in 1970

used an integral equation of the first kind for the distribu-

tion of the potential off the disks to obtain an approxima-

tion for the capacitance, reproducing the result of Kirch-

hoff and Hutson and providing details with regard to the

next correction term. Of all the results that co~firmed

Kirchhoff’s result, conformal mapping was used in com-

puting the fringing field effects.

In rnimostrip applications, the capacitor plates are sep-

arated by a dielectric sheet instead of free space. Employ-

ing (lakwkin’s method and using a basis function which

cm-responds to a constant charge distribution, Itoh and

Mittra [’7] obtained numerically the capacitance for a

circular microstrip disk. Borkar and Yang [9] formulated

the problem in terms of dual integral equations and

numerically computed the capacitance for small plate

separation, For practical usage, Shen et al. [10] devised an

approximate formula for the capacitance by drawing anal-

ogy with Kirchhoff’s formula.
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In this article we make use of the dual integral equa-

tions formulation to study the effects of fringing fields on
the capacitance of a circular mierostrip disk, We first
derive an asymptotic lower bmmd for the capwitance
reducible to that obtained by Polya and Szego [3] in the
limit of free space. W@ then evaluate with a nurnmical
method the capacitance for small plate soparati~n, For
practical usage, we also obtain, with a seminumetioal
approach, an approximat~ formula for the capacitan~e of
the microstrip disk. The various techniques ar~ compared
and illustrated with various nummimd results,

11. 1%RMUTATKMJ m ASYMPTOTICRESULT

Consider a circular miwostrip disk with radius a atth

potential of v and separated from the ground phmo by a
dielectric substrate with relative pcm-nittivity c, and thick-
ness d (Fig, 1). The mixed boundary value problem has
been formulated in terms of dual integral equations [7], [9]

~mdaa6(a)G(a)Jo(aP)=*, 0<67<. (la)

and

J~daa6(a)JO(aP) ==0, p>a (lb)
-0

where

and

u(p) = ~mdct aqa)Jo(ap) (3)

is the charge distribution on the disk,

Applying a method similar to that of Galerkin [7],

Tranter [11] assumed that

d(a) = a-’ ~:. %J2m+K(~~). (4)

Substituting (4) into (3), we obtain

a(p) =
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“%ground plane

Fig, 1, C#emn?tdcdccdigumticm of the problem,

where ~$~)(x) is a Jacobi% polynomial. By doing SO)

equation (lb) is automatically satisfied, Substitution of (4)

into (la) produces an infinite system of linear equations

which can be solved by an iteration process, It is ap-

propriate to choose ~= 1 so that the iterative solution

converges quickly when d-dl When N= 1, the Jacobi’s

polynomial becomes hyymdre’a polynomial, thus the

above approach is similar to that used by Polya and Szegi3

[3],

The infinite system of linear equations can be written as

where

and

{

o,
‘(n) - vercou/2d,

n>O
n=o, (6c)

Furthermore, by integrating the charge density in (5), it

can be shown [3], [9] that the capacitance of the disk is

(7)

To find a small d approximation for Amn, we rewrite it

as [11]

‘m” - (2!%) + ‘m

where tlm~ is the Kronecker delta function and

(8a)

Bmn=~mda[G(a)-l] a-’J,m+,(aa)J,.+,(aa)($b)

It can be shown that Bm~O as d~O, so the matrix

formed by Am is dominated by diagonal elements. To

obtain a small d/a approximation to Bmn,we revtrite G(a)

as

As such, Bm can be evaluated exactly as a summation of

elliptic integrals [3] from which we can find its small d
approximation. However for general Bmn, we resort to

other metms to find its small d approximation.

First we notice that

— [sinusoidal term]+ -J2m+ 1(aa)J2n+ I(cIf2)- ~~a
ma

+ 0((s-3), a-+oo (10)

and

G(a) -1-- + + 0(a2d2), ad-+0, (11)
r

Thus we rewrite (8b) as

B .~ += ‘&
mn mn ‘7r !o

*[ G(a)-q

(12)

where

{
Cm=~@da[G(a)- l]a-’ J2m+j(ua)J2.~l(aa)

(-l)n-m W
-—

n ((X($2+442 )
and A is an arbitrary complex constant. We note that the

part in the curly bracket of Cm. consists of a sinusoidal

term plus a term of O(a ‘9) when a+ OC,Thus the contrib-

ution to the integral comes from around a =s0. h view of

(11), we can write Cm. as

Cmnm -
Wda d

f{
; ‘2m+ l(aa)J2n+ l(a~)

o r

.k.!rn aa
w (aa)2+A2 )

+ J[ 1Omda G(a)- 1+$ a-*
r

( )

=-_!K_!_ ,
x J2m+ i(a@)Jz.+ l(cuz)- ~

(aa)2+A2

(13)

Both of the above integrals converge. In the limit d/aaO,
the first integral is of O(d/a) while the second integral is

of o(d/a) indicating an order higher than the order of

d/a and, therefore, less significant. Therefore,

cmn--~Jw~~{J2m+,(~a)J2n+,(~
r

&xl.”sL
w (aa)2+A2 }

()+0. $ : 0,-+

ma-:li:o(f‘da(aa)-~J2m+ ~(aa)J2.+ Jaa)da
r o

_ (-l)n-m @da (aa)l-’

IT Jo )(aa)2+A2 ‘
(14)



loo ISL?RTRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MIT-28, NO. 2, FRRRUARY 1980

It cm be shown [12, p, 692] that Appendix A. Hence from (12) we find

f-%..)
(-~y-m

([ ((-1)”-” I lnj+ln4–~
-AJ2m+ *(aC?)J”a+ l(aa)’- 1+A ~(l) Bmn-–

‘7Aa ?? aer

+(n-m+ l/2)
-4(wVw#-ln2- ~

_ $(Wt-n+l/2)
2 ])

i- O(A), ?i+o (15a)

where +(x) is the psi (digama) function, Using the

recurrence relation of ~(x), the above approximation can

be reduced to

Also, it can be shown that

. [I-AM] +O(A), A+o. (15C)

Therefore, we conclude that

where y is the Euler’s constant. Next, we shall evaluate the

second integral of B~fl. By making use of (9), it can be

rewritten as

(-1)”-m ~da ~

f

(- l)”-m a6,

‘T (aa)2+A2
[G(a)- 1]= ~ ~

o r

.[e-2mcd _e–2(n+l)cad _1 (- l)n-m (17)
2A

a ~---~’n52n2(1nn)(~)n_(_l)n-nd %

?= r

* (-l)*-W d

[

2Ad 3

1
— – ~ + (2(d2),

v
~ y+ln ~ :+0. (18)

r

The small d/a approximation in the above is evaluated in

From the above, we deduce that an element of the matrix

is

am
A

_ (–l)n-m @
mn - (2+4n)

()+o~,
d

as —--+0.
a a

(20)

If, instead of choosing an infinite set of basis functions in

(5), we choose N+ 1 basis function, then the matrix equa-

tion to be solved is

~ a~A~. = E(n), fi=0,1,2, ”””, N. (21)
m==O

We define a normalized capacitance ~= Cd/(na2crco). It

can be shown, by inverting the matrix in (21) and as a

consequence of (6) and (7] that the approximate normal-

ized capacitance is

Xm——
CN – 2 detA I

(22)

where A“oois the cofactor of the element Am of A and A is
an (N+ 1)X (N + 1) matrix. It was shown by I?olya and

Szegi5, or it is apparent as a consequence of variational
properties of Galerkin’s method [13], that

Since the infinite set of Legendre’s polynomial used in (5)

is complete, we expect that

Also we can rewrite

From (20), it is seen that A~m- O(1) if n = m and Am=
O(d/a) if n #m when d/a~O. Thus we conclude that
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AOi- O(d/a) for i+ O, and S?= ~AOi&- 0(d2/a2) when

d/a~O. As a consequence

. 1 ()d2 d

cN-~+O ~ ‘ asro”
(26)

From (20), we obtain

(27)

We see that for N finite, (?N is asymptotic to the same

leading term. Fr:m (22), we may be led to the wrong

conclusion that Cw = C is also asymptotic to the same

expression. We have to be cautioned, due to our argument

in (10) which is only good for m and n finite, that we

cannot extend the validity of (27) to that when N-w,

Thus (27) is not the correct asym~totic value to ~ but it is

an asymptotic lower bound to C. When c,= 1, we repro-

duce the asymptotic lower bound obtained by Polya and

Szego [3].

Kirchhoff [1], Hutson [4] and Leppington [5] have all

obtained the correct asymptotic value of the capacitance

when c,= 1 with the aid of conformal mapping. When

q >1, conformal mapping is not applicable. Thus we shall

obtain an approximate formula for the capacitance

through a seminumerical approach.

III. NUMERICAL METEIOD

The numerical evaluation of the capacitance for the

coaxial disks in free space was first carried out in 1941 by

Nomura [14]. His results were later checked and corrected

where errors existed in 1958 by Cooke [15], Cooke makes

use of the Love–Cooke [16] integral equation which is

singular. Nomura expanded the potential in a series of

integrals involving Bessel functions. It was found by them

that for d/a <0.2, the computation for the capacitance

was very laborious and was not carried out.

Itoh and Mittra [7] used Galerkin’s method and use of

one basis function, found the numerical capacitance of

the disk. When d/a >0.5, it was found that the use of

Maxwell’s function afforded 3 digit accuracy when com-

pared with the Nomura–Cooke results. However, for d/a
<0.5, the results deteriorate. Borkar and Yang [9] used

Tranter’s method to the solution of the dual integral

equation but the results obtained are inaccurate for d/a <
1 probably due to the difficulties encountered in evaluat-

ing the integral (6b). Also the choice of an infinite set of

Legendre’s polynomial is unsuitable for numerical com-
putation. This is because the singularity of charge distrib-

ution at the edge can only be approximated by infinitely

many Legendre’s polynomials. If we choose ~ = 1/2 in (4),

the corresponding charge distribution from (5) is given by

u(p) =

1
O<p <a (28a)

o, p >a. (28b)

We see that such a representation takes into account the

charge singularity at the edge which is different from the

approach of Borkar and Yang [19] for d/a< 1, Notice

also that Itoh and Mittra [7] considered only the first term

in the series. Analogous to (6b), and noting that

J2.+ ,/2(aa)= -j,.(aa), we define

KAt=~WdaG(a)@~~(aa)&(aa) (29)
o

where jp(a) is a spherical Bessel function. The integrand is

oscillatory and decays algebraically, which makes its

evaluation difficult. However, noticing that as a-+ co

G(a)- “ + (exponentially small terms) (30)
ad[l+c,]

we rewrite

‘M=~@da[ G(a)- ad[~+c,] ]a~z~(aa)jz”(aa)

+ ~~Wday&(aau2.(aa). (31a)

The first integrand decays exponentially fast and can be

computed efficiently. The second integral can be

evaluated explicitly giving

~@da~z~(a)&(a)=$ ~4&1): (31b)

l%: norm#ized capacitance using (N+ 1) basis function

is CN=2Kw/det\Kl.

For numerical computation, it is found that the use of

the first two basis function gives 4 digit accuracy when

d/a <0.4 and 5 digit accuracy when d~a >0.4 when com-

pared with the Nonmra-Cooke results fore, = 1,

IV, SEMINUMERICAL APPROXIMATION

From the form of the asymptotic lower bound derived

by the authors, and the various work of the previous

authors, we conclude that an asymptotic approximation to

the capacitance when d/ a+O is of the form

c=
(

2d [ln(’)+g(c,, $ +~(1).* l+—
r~a ))

(32)

An analytic expression for the function g(e,, d/a) is dif-

~icult to derive. We also note that the asymptotic lower
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Is —

10-

S —

?_+_ ./O -.. ,~...
20 &

Fiff, 2. me function .F(6,)4

bcnmd of the dielectric case differs from the free space

GRS@by a t$rm

which can be shown to bs almost a linear function in ~,

(Fig, 2), Thk leads us to believe that the furwticm

8(%, d/a] in (32) is also a linear furmticm of 6,8 We can fit
the numerical curve WY well if we also make it a linear

fumticm of d/a8 Thus th~ nummiwd value of tlm wqmQi-

tance is computed fm E,= 1 and 8,5 at d/a= 0.1 and

d/a =0,5. By interpolating bctwmm E,=(1, 8.5) and d/a =

(0,1, 0.5), we obtained th~ following fmmmla:

1)+ ; (0.268e, + 1.65) . (33)

We note that the first term is equal to the capacitance by

ignoring fringing fields, For the terms acwxmting for tlm

fringing field effects, the logarithmic tmn is duo to the

field emanating from charges at the top surface of the disk

and is therefore indepmdent of er, The remaining higher

order tmrns are mainly ths results of fringing field effects

at ths edge of the disk which are seen to depend on both e,

and d/ra.

V. CO~~LUSIQ~S

We have obtained an approximate formula for, the

capacitance of a circular rnicrmtrip disk in (33) by a

seminumeri~al approah The asymptotic lower bound has

been derived in (27) wkiickt reduces to that obtained by

Polya and Sz~gQ in the ~ase of e,= 1. In addition a

numerical method is used to compute the highly accurate

values fm C in order to compare with the various results.
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---. -.A2YMP70TICLOWER BOUND (ALW

---- KIRCHOFF’S APPROXIMATlONiKA)

F

arcl

5
4

.“ .4

...-
11 t 1 1 , 1 I u.

01 (2E 63 05” 19
d/a

d@ oi” “Q? 0,3 0,4’ F$- Q,6 07 0S w “- 10
NM I w 1.s80 1fw 2,0751 2,3183 2,E607 Mm-l 5,0464 3@aj 3,534i-
SNA 1,3=2 I,57 ia2__” 2,06 ?,32 2.56 2.8.9 a 16 3,48 881
ALa- 1!20 1,38 ‘I,4Q I ,46 I 50 1!53 ! !55 -1,37 I 57__ 11s6..
KA I,Z9 I 49 I 65 1,80 1,93 2,04 An?,19 2!’?3 242——-

I?ig, 3. Normalized capacltancoas a function of d/a for E,= 1.

- NUMERICAL METW20 (NM]

--- SEMI-NUMERICAL APPROXIMATION MNAI

., ..,,. ASYMPTOTIC LOWER ROUND(ALO)

---+ HEN’S APPRQXIMATIQN

,/

L--l.
~v +J55:;...........-

~&”..#: f..&--
01 ()? 0,3 O,b 01

ala

d;e 01 -0? 0,3 04 05 ‘6,6 67 ,0.8 09 1.0

NM 1,1s0 1<341 1,497 1,6533 1,0100 h367B &1269 22073 8,4491 2,s122

_$J+. - ____T, -J33[ Is I4a I 84 ;Eo- 197 215 ~ ~ ,“2.7_2_
_&L~ 1,1~ 125 1,35 L43 I 31 1,s$ M <?9 Lio I!s6

Fig, 4. Normalized sapwitanc~ aaa function af ci~afor t?,= 2.65,

— NUMERICAL METHOD (NM}
-- ,+,EMpNLJMW~L APPROXIMATION (gNA)

.-., -.. .A5YMPTOTIC LOWER BOUNO (ALB)

----sHEN’8 APPROXIMATION
Cr 89,6

s

1

4
“0

h3
$

:2 /

,Mz
01 02 03 0!5 10

dlo

r :?-:+---~~~~4/* 0! o~. ~~-T=---’f@--Q--J‘g’ ‘e--s “0NM I 114- 122s 1,342 ,14578 I,5757 1,6957 I 8177 I 9418 2,013712,1942

m 11! 123 “ I 54 I ,46 Lw .J:7L , yk y!. 210 2!25-G. .. ---- . . .
ALB 1,06—-— &- .-1 ‘~ -12~- :!-Zc- EL –136 1~o 145 149-
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In Figs. 3-5 we plot Cd/c,eova2 as a function of d/a for

the dielectric constants e,= 1, 2.65, and 9,6, For e,= 1, we

cmnpars our results with KirchhafT’s formula

~=${’+:[ln(3)+’~(’6~)’34)
When c, # 1, we compare with the formula devised by

Shen et al. [8]
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We note that the setimaical approximation agrees

very well with the munmical m$uh, me mrcsr is approxi-

matdy i Percent for d/u 6 ~.% We ah note that the

apprcminwtiom due to Kirchhoff h inawwrate unless d/u
<0$1 and due to Mm et al. unless d/a<O, 1, Shim’s
L3~~rQdnU3tiQ12 hl12Uf’S ~~ MMM’ Of abOUt 6 P@l%%XltWh@n

d/a=Q,l and CP=2,65,

In general we see that the fringing fiekl effswts cm the

cq.wwi$sance ars not small even for .srnall d/a. For exam=

pkt, when d/~= 0,1 and E,= 2,65, the fringing field gives

an 18 percent increase in oapacitanca When Er is large,

tie fringing field effects bmxmne smaller because of the

incrwnxl trapping of electri~ flux in the dielectric sub-

strata,

We want to evaluate a typical integral in the series

given by (17)

1Im m 1
[e -2nad_e - 2[n~ I)ad] & (/+1)

o d((w)2 +/42)

First by partial fractioning the rational part of the in-

tegrand, the above integral can be written as

-lull
~.—

f
[e-2nad_~-2(n+I)ad da

()A2d O aa+~
1

a

I*1.—
1

‘2d 0 2(W3

[e-had_ e-z(fI+l)ad]da

+ &~m:[e-2”ti-e-2(”+ l)ad]da. (A2)

The first integral can be evaluated exactly in terms of

exponential integrals

J
ee -2(n + l)ad & = #?&%d/a

o
+[,-2%? ]

()
a+;

“E1(2L4nd/a)– e2u(n+1)~laE1(2 kA(n + l)d/a). (A3)

The second integral is similar to the first, The third

integral can be obtained from (A3) by taking the limiting

value of A ~0. As such:

Cel

J[;e -2nad_e - 2(n+l)~ & = eln

o 1 (+). w

Therefore

.E1(–2L4nd/a) – e2u@+ lWaEl(2iA(n + l)d/a)

_ e-zu(n+ W~El(2iA(n -t- l)d/a)

( )]+21n * . (A5)

‘-d%?v’’w+wl
1+6,

— -t 0(d2),
+= 2eFAa

d-+0. (A7)
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Analysis of a Microstrip Covered
with a Lossy Dielectric

I. J. BAHL AND STANISLAW S. STIJCHLY, SENIORMEMEER, IEEE

Abstm@--Tbesnafysia of a ml-p fine covered with a low-loss&et
material is pmented in this psper. Numerical s-esdtashow that the
~fi* of a mkmstrip coveredwith a thick sheetof M@ dfektrk
cmmtaotare drmtically affected Ths effect is more pronouncedfor smaU
vsluevof W/h ratio. A cloaeA-formexpremlon for the dfekctric 10SSof a
nudtifayer struetme is derived. The extensioo of presentmetfmd to Mgh-
haa materkdsfs slao dfscumed.

Nusoerfcdsod experbentaf results for effective dielectric constantof a
d-p coveredwith low- and high-km sheet materials are compared
and found to be fn god agreement.

I. INTRODUCTION

T

HIZ rniczwstrip line has been widely used as a trans-

mission line [1] as well as a component in

microwave-integrated circuits [2]–[4]. Microstrip antennas

have found many applications in airborne systems due to

their low profile and conformal nature. Recently several

papers have appeared in literature describing microwave

methods employing microstxip lines for monitoring mois-

ture content in food materials, sheet materials, etc. [5]-[7].

In this case the line was supported on a substrate material

of relatively low dielectric constant ( < 10) and then

covered fully or in part by a “wet” substance of relatively

high permittivity (> 15). The fringing field interacts with

the substance and produces a change in the attenuation

constant of the line. The change in the attenuation con-

stant can be calibrated in terms of moisture content or

other parameters which affect the dielectric properties of

the material,

when the microstrip line is covered by a sheet material,

its characteristics, like characteristic impedance, phase

velocity, losses, and Q factor change with the dielectric

constant, loss tangent, and thickness of the sheet material.

It is interesting and important to study the effect of sheet

materials on the characteristics of mierostrip lines. Com-
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prehensive literature containing analyses of microstrip

lines are available [1], [3]. Several methods for the solution

of a two-dimensional boundary value problem involving

two different media are known, for example, the confor-

mal mapping method [8], the integral equation method [9],

[10], the relaxation method [11], and the variational

method [12]. The analytical treatment of multiple

boundaries is much easier in the variational method than

in the cortformal mapping or other numerical methods. In

the variational method an approximate charge distribu-

tion on the strip conductor is assumed and the resulting

formulas for capacitance can be expressed in closed form

which are convenient for calculation on a digital com-

puter.

In this paper, first the variational method is described

for the microstrip covered with a low-loss sheet material

then the extension to high-loss materials is discussed. A

closed-form expression for the dielectric loss of a muhi-

layer structure is also derived. Numerical results obtained

for the characteristic impedance and the phase velocity of

a microstrip covered with a lossy sheet can also be used

for calculating the resonant frequency of microstrip an-

tennas buried in a 10SSY medium and to calculate the

change in the characteristic impedance and phase velocity

values of a microstnp coated with protective layers.

II. THEORY

A. Characteristic Impedance and Phase Veloci@

The characteristic impedance 2., and the phase velocity

UP,of a TEM transmission line can be written as

2.=2/< (1)

vp=c/< (2)

with
z= l/coc

6== c/co

(3)

(4)
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